‘Fingerprint database’ could help scientists to identify new cancer culprits


17-04-2019

Scientists in Cambridge and London have developed a catalogue of DNA mutation ‘fingerprints’ that could help doctors pinpoint the environmental culprit responsible for a patient’s tumour – including showing some of the fingerprints left in lung tumours by specific chemicals found in tobacco smoke.

Mutational signatures ... allow us to treat tumours as a crime scene and, like forensic scientists, allow us to identify the culprit – and their accomplices – responsible for the tumour.

Serena Nik-Zainal

Our DNA, the human genome, comprises of a string of molecules known as nucleotides. These are represented by the letters A, C, G and T. Sometimes, changes occur in the ‘spelling’ of our DNA – an A becomes a G, for example. These changes, known as mutations, can be caused by a number of factors, some environmental, such as exposure to tobacco smoke or to ultraviolet light.

As cells divide and multiply, they make copies of their DNA, so any spelling mistakes will be reproduced. Over time, the number of errors accumulates leading to uncontrolled cell growth – the development of tumours.

Previously, scientists have had only a limited number of tools for working out the cause of an individual’s tumour. As it is now possible to study the entire human genome very rapidly, scientists have been able to find all the mutations in a patient’s cancer, and see patterns – or ‘mutational signatures’ – in these tumours.

Now, in a study published in the journal Cell, a team of researchers from the University of Cambridge and King’s College London have developed a comprehensive catalogue of the mutational signatures caused by 41 environmental agents linked to cancer. In future they hope to expand it further, using similar experimental techniques, to produce an encyclopaedia of mutation patterns caused by environmental agents.

“Mutational signatures are the fingerprints that carcinogens leave behind on our DNA, and just like fingerprints, each one is unique,” explains Dr Serena Nik-Zainal from the Department of Medical Genetics and MRC Cancer Unit at the University of Cambridge, who led the Cambridge Team.

“They allow us to treat tumours as a crime scene and, like forensic scientists, allow us to identify the culprit – and their accomplices – responsible for the tumour.”

Read the full story

Image: Cigarettes

Credit: geralt

Reproduced courtesy of the University of Cambridge

 

The University of Cambridge is acknowledged as one of the world's leading higher education and research institutions. The University was instrumental in the formation of the Cambridge Network and its Vice- Chancellor, Professor Stephen Toope, is also the President of the Cambridge Network.

University of Cambridge (cam.ac.uk)