Mathematical model predicts best way to build muscle

Researchers have developed a mathematical model that can predict the optimum exercise regime for building muscle.

  Woman lifting weights  Credit: John Arano on Unsplash

The researchers, from the University of Cambridge, used methods of theoretical biophysics to construct the model, which can tell how much a specific amount of exertion will cause a muscle to grow and how long it will take. The model could form the basis of a software product, where users could optimise their exercise regimes by entering a few details of their individual physiology.

The model is based on earlier work by the same team, which found that a component of muscle called titin is responsible for generating the chemical signals which affect muscle growth.

The results, reported in the Biophysical Journal, suggest that there is an optimal weight at which to do resistance training for each person and each muscle growth target. Muscles can only be near their maximal load for a very short time, and it is the load integrated over time which activates the cell signalling pathway that leads to synthesis of new muscle proteins. But below a certain value, the load is insufficient to cause much signalling, and exercise time would have to increase exponentially to compensate. The value of this critical load is likely to depend on the particular physiology of the individual.

We all know that exercise builds muscle. Or do we? “Surprisingly, not very much is known about why or how exercise builds muscles: there’s a lot of anecdotal knowledge and acquired wisdom, but very little in the way of hard or proven data,” said Professor Eugene Terentjev from Cambridge’s Cavendish Laboratory, one of the paper’s authors.

Read the full story

Image: Woman lifting weights

Credit: John Arano on Unsplash

Reproduced courtesy of the University of Cambridge

Looking for something specific?